Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Sci (Weinh) ; : e2308349, 2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38582522

RESUMEN

Customizable and number-tunable enzyme delivery nanocarriers will be useful in tumor therapy. Herein, a phage vehicle, T4-Lox-DNA-Fe (TLDF), which adeptly modulates enzyme numbers using phage display technology to remodel the tumor microenvironment (TME) is presented. Regarding the demand for lactic acid in tumors, each phage is engineered to display 720 lactate oxidase (Lox), contributing to the depletion of lactic acid to restructure the tumor's energy metabolism. The phage vehicle incorporated dextran iron (Fe) with Fenton reaction capabilities. H2O2 is generated through the Lox catalytic reaction, amplifying the H2O2 supply for dextran iron-based chemodynamic therapy (CDT). Drawing inspiration from the erythropoietin (EPO) biosynthetic process, an EPO enhancer is constructed to impart the EPO-Keap1 plasmid (DNA) with tumor hypoxia-activated functionality, disrupting the redox homeostasis of the TME. Lox consumes local oxygen, and positive feedback between the Lox and the plasmid promotes the expression of kelch ECH Associated Protein 1 (Keap1). Consequently, the downregulation of the antioxidant transcription factor Nrf2, in synergy with CDT, amplifies the oxidative killing effect, leading to tumor suppression of up to 78%. This study seamlessly integrates adaptable T4 phage vehicles with bio-intelligent plasmids, presenting a promising approach for tumor therapy.

2.
Adv Mater ; : e2402532, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38563503

RESUMEN

Due to inherent differences in cellular composition and metabolic behavior with host cells, tumor-harbored bacteria can discriminatorily affect tumor immune landscape. However, the mechanisms by which intracellular bacteria affect antigen presentation process between tumor cells and antigen-presenting cells (APCs) are largely unknown. The invasion behavior of attenuated Salmonella VNP20009 (VNP) into tumor cells is investigated and an attempt is made to modulate this behavior by modifying positively charged polymers on the surface of VNP. It is found that non-toxic chitosan oligosaccharide (COS) modified VNP (VNP@COS) bolsters the formation of gap junction between tumor cells and APCs by enhancing the ability of VNP to infect tumor cells. On this basis, a bacterial biohybrid is designed to promote in situ antigen cross-presentation through intracellular bacteria induced gap junction. This bacterial biohybrid also enhances the expression of major histocompatibility complex class I molecules on the surface of tumor cells through the incorporation of Mdivi-1 coupled with VNP@COS. This strategic integration serves to heighten the immunogenic exposure of tumor antigens; while, preserving the cytotoxic potency of T cells. A strategy is proposed to precisely controlling the function and local effects of microorganisms within tumors.

3.
Anal Chem ; 96(19): 7411-7420, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38652893

RESUMEN

Accurate analysis of microRNAs (miRNAs) at the single-cell level is extremely important for deeply understanding their multiple and intricate biological functions. Despite some advancements in analyzing single-cell miRNAs, challenges such as intracellular interferences and insufficient detection limits still remain. In this work, an ultrasensitive nanopore sensor for quantitative single-cell miRNA-155 detection is constructed based on ionic current rectification (ICR) coupled with enzyme-free catalytic hairpin assembly (CHA). Benefiting from the enzyme-free CHA amplification strategy, the detection limit of the nanopore sensor for miRNA-155 reaches 10 fM and the nanopore sensor is more adaptable to complex intracellular environments. With the nanopore sensor, the concentration of miRNA-155 in living single cells is quantified to realize the early diagnosis of triple-negative breast cancer (TNBC). Furthermore, the nanopore sensor can be applied in screening anticancer drugs by tracking the expression level of miRNA-155. This work provides an adaptive and universal method for quantitatively analyzing intracellular miRNAs, which will greatly improve our understanding of cell heterogeneity and provide a more reliable scientific basis for exploring major diseases at the single-cell level.


Asunto(s)
MicroARNs , Nanoporos , Análisis de la Célula Individual , Neoplasias de la Mama Triple Negativas , MicroARNs/análisis , Neoplasias de la Mama Triple Negativas/diagnóstico , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/patología , Humanos , Femenino , Línea Celular Tumoral , Límite de Detección
4.
Mol Pharm ; 21(3): 1537-1547, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38356224

RESUMEN

Mitochondria-targeting photothermal therapy could significantly enhance the tumor cell killing effect. However, since therapeutic reagents need to overcome a series of physiological obstacles to arrive at mitochondria accurately, precise mitochondria-targeting photothermal therapy still faces great challenges. In this study, we developed a self-delivery nanoplatform that specifically targeted the mitochondria of tumor cells for precise photothermal therapy. Photothermal agent IR780 was encapsulated by amphiphilic apoptotic peptide KLA with mitochondria-targeting ability to form nanomicelle KI by self-assembly through hydrophilic and hydrophobic interactions. Subsequently, negatively charged tumor-targeting polymer HA was coated on the surface of KI through electrostatic interactions, to obtain tumor mitochondria-targeting self-delivery nanoplatform HKI. Through CD44 receptor-mediated recognition, HKI was internalizated by tumor cells and then disassembled in an acidic environment with hyaluronidase in endosomes, resulting in the release of apoptotic peptide KLA and photothermal agent IR780 with mitochondria anchoring capacity, which achieved precise mitochondria guidance and destruction. This tumor mitochondria-targeting self-delivery nanoplatform was able to effectively deliver photothermal agents and apoptotic peptides to tumor cell mitochondria, resulting in precise destruction to mitochondria and enhancing tumor cell inhibition at the subcellular organelle level.


Asunto(s)
Nanopartículas , Neoplasias , Humanos , Terapia Fototérmica , Péptidos , Mitocondrias , Apoptosis , Nanopartículas/química , Línea Celular Tumoral , Fototerapia
5.
Mol Pharm ; 21(2): 467-480, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38266250

RESUMEN

Photothermal therapy (PTT) is an effective cancer treatment method. Due to its easy focusing and tunability of the irradiation light, direct and accurate local treatment can be performed in a noninvasive manner by PTT. This treatment strategy requires the use of photothermal agents to convert light energy into heat energy, thereby achieving local heating and triggering biochemical processes to kill tumor cells. As a key factor in PTT, the photothermal conversion ability of photothermal agents directly determines the efficacy of PTT. In addition, photothermal agents generally have photothermal imaging (PTI) and photoacoustic imaging (PAI) functions, which can not only guide the optimization of irradiation conditions but also achieve the integration of disease diagnosis. If the photothermal agents have function of fluorescence imaging (FLI) or fluorescence enhancement, they can not only further improve the accuracy in disease diagnosis but also accurately determine the tumor location through multimodal imaging for corresponding treatment. In this paper, we summarize recent advances in photothermal agents with FLI or fluorescence enhancement functions for PTT and tumor diagnosis. According to the different recognition sites, the application of specific targeting photothermal agents is introduced. Finally, limitations and challenges of photothermal agents with fluorescence imaging/enhancement in the field of PTT and tumor diagnosis are prospected.


Asunto(s)
Nanopartículas , Neoplasias , Humanos , Fototerapia/métodos , Terapia Fototérmica , Línea Celular Tumoral , Neoplasias/diagnóstico por imagen , Neoplasias/terapia , Nanomedicina Teranóstica/métodos , Imagen Óptica
6.
Adv Healthc Mater ; 13(2): e2302264, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37812564

RESUMEN

Multi-modal combination therapy for tumor is expected to have superior therapeutic effect compared with monotherapy. In this study, a super-small bismuth/copper-gallic acid coordination polymer nanoparticle (BCN) protected by polyvinylpyrrolidone is designed, which is co-encapsulated with glucose oxidase (GOX) by phospholipid to obtain nanoprobe BCGN@L. It shows that BCN has an average size of 1.8 ± 0.7 nm, and photothermal conversion of BCGN@L is 31.35% for photothermal imaging and photothermal therapy (PTT). During the treatment process of 4T1 tumor-bearing nude mice, GOX catalyzes glucose in the tumor to generate gluconic acid and hydrogen peroxide (H2 O2 ), which reacts with copper ions (Cu2+ ) to produce toxic hydroxyl radicals (•OH) for chemodynamic therapy (CDT) and new fresh oxygen (O2 ) to supply to GOX for further catalysis, preventing tumor hypoxia. These reactions increase glucose depletion for starvation therapy , decrease heat shock protein expression, and enhance tumor sensitivity to low-temperature PTT. The in vitro and in vivo results demonstrate that the combination of CDT with other treatments produces excellent tumor growth inhibition. Blood biochemistry and histology analysis suggests that the nanoprobe has negligible toxicity. All the positive results reveal that the nanoprobe can be a promising approach for incorporation into multi-modal anticancer therapy.


Asunto(s)
Nanopartículas , Neoplasias , Animales , Ratones , Cobre , Polímeros , Glucosa Oxidasa , Ratones Desnudos , Neoplasias/tratamiento farmacológico , Glucosa , Peróxido de Hidrógeno , Línea Celular Tumoral , Microambiente Tumoral
7.
Int J Biol Macromol ; 253(Pt 8): 127548, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37865374

RESUMEN

Abscess wound caused by bacterial infection is usually difficult to heal, thus greatly affect people's quality of life. In this study, a biodegradable drug-loaded microneedle patch (MN) is designed for targeted eradication of S. aureus infection and repair of abscess wound. Firstly, the bacterial responsive composite nanoparticle (Ce6@GNP-Van) with a size of about 182.6 nm is constructed by loading the photosensitizer Ce6 into gelatin nanoparticle (GNP) and coupling vancomycin (Van), which can specifically target S. aureus and effectively shield the phototoxicity of photosensitizer during delivery. When Ce6@GNP-Van is targeted and enriched in the infected regions, the gelatinase secreted by the bacteria can degrade GNP in situ and release Ce6, which can kill the bacteria by generating ROS under laser irradiation. In vivo experiments show that the microneedle is basically degraded in 10 min after inserting into skin, and the abscess wound is completely healed within 13 d after applying Ce6@GNP-Van-loaded MN patch to the abscess wound of the bacterial infected mice with laser irradiation, which can simultaneously achieve the eradication of biofilm and subsequent wound healing cascade activation, showing excellent synergistic antibacterial effect. In conclusion, this work establishes a synergistic treatment strategy to facilitate the repair of chronic abscess wound.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Fotoquimioterapia , Humanos , Ratones , Animales , Staphylococcus aureus , Fármacos Fotosensibilizantes/farmacología , Absceso/tratamiento farmacológico , Calidad de Vida , Antibacterianos/farmacología , Vancomicina/farmacología
8.
Biomaterials ; 301: 122274, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37586233

RESUMEN

Inflammatory bowel disease (IBD) is characterized by the high level of reactive oxygen species (ROS) and highly dysfunctional intestinal flora. Here, a stimulation-responsive mucoadhesive probiotic Lac@HDP was rationally constructed for achieving specific adhesion of colitis site and depleting high level of ROS in inflammatory site. Briefly, Lac is Lactobacillus acidophilus, HDP is obtained by hyaluronic acid grafted with dopamine protected by phenylboric acid. Specifically, by consuming a large amount of ROS, phenyl borate group of Lac@HDP is oxidized and fractured, thus exposing the catechol hydroxyl group and obtaining strong mucosal adhesion ability, thereby significantly prolong the retention time of Lac in the inflammatory site. In the murine model of acute and chronic colitis, the stimulation-responsive mucoadhesive probiotics were significantly more effective in alleviating colitis symptoms than antioxidants and probiotics alone. In addition, the abundance and diversity of intestinal flora were increased after treatment with Lac@HDP, which was helpful to alleviate IBD. Importantly, the stimulation-responsive mucoadhesive probiotics have good biological safety in vivo, which provides the prospect of clinical application in the future.


Asunto(s)
Colitis , Microbioma Gastrointestinal , Enfermedades Inflamatorias del Intestino , Probióticos , Ratones , Animales , Especies Reactivas de Oxígeno , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Colitis/tratamiento farmacológico , Probióticos/uso terapéutico
9.
Biomaterials ; 301: 122231, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37418854

RESUMEN

The challenge of wound infections post-surgery and open trauma caused by multidrug-resistant bacteria poses a constant threat to clinical treatment. As a promising antimicrobial treatment, photothermal therapy can effectively resolve the problem of drug resistance in conventional antibiotic antimicrobial therapy. Here, we report a deep-penetration functionalized cuttlefish ink nanoparticle (CINP) for photothermal and immunological therapy of wound infections. CINP is decorated with zwitterionic polymer (ZP, namely sulfobetaine methacrylate-methacrylate copolymer) to form CINP@ZP nanoparticles. Natural CINP is found to not only exhibit photothermal destruction of methicillin-resistant Staphylococcus aureus (MRSA) and Escherichia coli (E. coli), but also trigger macrophages-related innate immunity and enhance their antibacterial functions. The ZP coating on the surface of CINP enables nanoparticles to penetrate into deeply infected wound environment. In addition, CINP@ZP is further integrated into the thermosensitive Pluronic F127 gel (CINP@ZP-F127). After in situ spraying gel, CINP@ZP-F127 is also documented notable antibacterial effects in mice wound models infected with MRSA and E. coli. Collectively, this approach combining of photothermal therapy with immunotherapy can promote delivery efficiency of nanoparticles to the deep foci of infective wounds, and effectively eliminate wound infections.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Nanopartículas , Infección de Heridas , Ratones , Animales , Terapia Fototérmica , Escherichia coli , Tinta , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Polímeros/farmacología , Infección de Heridas/tratamiento farmacológico , Decapodiformes
10.
Polymers (Basel) ; 15(7)2023 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-37050365

RESUMEN

Photothermal therapy directly acting on the nucleus is a potential anti-tumor treatment with higher killing efficiency. However, in practical applications, it is often difficult to achieve precise nuclear photothermal therapy because agents are difficult to accurately anchor to the nucleus. Therefore, it is urgent to develop a nanoheater that can accurately locate the nucleus. Here, we designed an amphiphilic arginine-rich dendritic peptide (RDP) with the sequence CRRK(RRCG(Fmoc))2, and prepared a nucleus-targeting nanoplatform RDP/I by encapsulating the photothermal agent IR780 in RDP for precise photothermal therapy of the tumor nucleus. The hydrophobic group Fmoc of the dendritic peptide provides strong hydrophobic force to firmly encapsulate IR780, which improves the solubility and stability of IR780. Moreover, the arginine-rich structure facilitates cellular uptake of RDP/I and endows it with the ability to quickly anchor to the nucleus. The nucleus-targeting nanoplatform RDP/I showed efficient nuclear enrichment ability and a significant tumor inhibition effect.

11.
J Control Release ; 356: 59-71, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36842488

RESUMEN

The endogenous H2S plays an important role in the occurrence and development of colon cancer, and is related to the abnormal blood vessels. Here, we reported on a sulfhydryl hyaluronid-based hydrogel (HA-SH) synthesized by amide reaction and further obtained a bacterial hydrogel by loading Thiobacillus denitrificans to the hydrogel for targeting adhesion to the colon. It was found that the loaded bacteria in HA-SH hydrogel can scavenge excess H2S in colon cancer, then promote tumor vascular normalization and improve the delivery of chemotherapy drug CPT to inhibit tumor progression. Both in vivo and in vitro experiments show that the self-crosslinked bacterial hydrogel has satisfactory effects in inhibiting tumor progression and promoting tumor vascular normalization in colon cancer. This study presents an efficient method to target the colon and consume overexpressed H2S in colon cancer to inhabit tumor progression, providing a new way for oral drug treatment of colon cancer.


Asunto(s)
Neoplasias del Colon , Hidrogeles , Humanos , Hidrogeles/uso terapéutico , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/patología , Bacterias
12.
Small ; 18(49): e2205193, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36285774

RESUMEN

Although anticancer vaccines have achieved certain effects in early clinical practice, T cell immunity as the most common responsive pattern of anticancer vaccines is still limited by unsatisfied tumor recognition and inhibition efficiency. As the critical step of T cell immunity, uptake and presentation of specific antigen by antigen-presenting cells (APC) can be activated by inflammation for enhancing the response of T cells to the antigen source. Here, a hybrid nanovaccine named PTh/MnO2 @M activated with a near-infrared ray (NIR) is prepared by coating an autologous tumor cell membrane on the surface of a polythiophene/MnO2 composite core. The photoelectrical material polythiophene can produce local microinflammation under NIR radiation and activate specific T cell antitumor immunity by promoting APC maturation and autologous tumor antigens presentation. Moreover, the synthesized nanovaccine PTh/MnO2 @M is shown to induce a significant antitumor immune response, effectively inhibit the progression of melanoma in mice, and significantly prolong the survival time of mice in vivo. This strategy aims to enhance T-cell immune responses by promoting antigen presentation, leading to effective and specific cancer therapy.


Asunto(s)
Neoplasias , Vacunas , Ratones , Animales , Presentación de Antígeno , Compuestos de Manganeso , Óxidos , Antígenos de Neoplasias , Neoplasias/terapia
13.
Adv Drug Deliv Rev ; 185: 114296, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35439571

RESUMEN

Recently, with the rapid development of bioengineering technology and nanotechnology, natural bacteria were modified to change their physiological activities and therapeutic functions for improved therapeutic efficiency of diseases. These engineered bacteria were equipped to achieve directed genetic reprogramming, selective functional reorganization and precise spatio-temporal control. In this review, research progress in the basic modification methodologies of engineered bacteria were summarized, and representative researches about their therapeutic performances for tumor treatment were illustrated. Moreover, the strategies for the construction of engineered colonies based on engineering of individual bacteria were summarized, providing innovative ideas for complex functions and efficient anti-tumor treatment. Finally, current limitation and challenges of tumor therapy utilizing engineered bacteria were discussed.


Asunto(s)
Bacterias , Neoplasias , Bacterias/genética , Bioingeniería , Humanos , Neoplasias/terapia
14.
Nano Lett ; 21(10): 4270-4279, 2021 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-33955768

RESUMEN

Engineered bacteria are promising bioagents to synthesize antitumor drugs at tumor sites with the advantages of avoiding drug leakage and degradation during delivery. Here, we report an optically controlled material-assisted microbial system by biosynthesizing gold nanoparticles (AuNPs) on the surface of Shewanella algae K3259 (S. algae) to obtain Bac@Au. Leveraging the dual directional electron transport mechanism of S. algae, the hybrid biosystem enhances in situ synthesis of antineoplastic tetrodotoxin (TTX) for a promising antitumor effect. Because of tumor hypoxia-targeting feature of facultative anaerobic S. algae, Bac@Au selectively target and colonize at tumor. Upon light irradiation, photoelectrons produced by AuNPs deposited on bacterial surface are transferred into bacterial cytoplasm and participate in accelerated cell metabolism to increase the production of TTX for antitumor therapy. The optically controlled material-assisted microbial system enhances the efficiency of bacterial drug synthesis in situ and provides an antitumor strategy that could broaden conventional therapy boundaries.


Asunto(s)
Nanopartículas del Metal , Shewanella , Oro , Tetrodotoxina
15.
Angew Chem Int Ed Engl ; 59(48): 21562-21570, 2020 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-32779303

RESUMEN

By leveraging the ability of Shewanella oneidensis MR-1 (S. oneidensis MR-1) to anaerobically catabolize lactate through the transfer of electrons to metal minerals for respiration, a lactate-fueled biohybrid (Bac@MnO2 ) was constructed by modifying manganese dioxide (MnO2 ) nanoflowers on the S. oneidensis MR-1 surface. The biohybrid Bac@MnO2 uses decorated MnO2 nanoflowers as electron receptor and the tumor metabolite lactate as electron donor to make a complete bacterial respiration pathway at the tumor sites, which results in the continuous catabolism of intercellular lactate. Additionally, decorated MnO2 nanoflowers can also catalyze the conversion of endogenous hydrogen peroxide (H2 O2 ) into generate oxygen (O2 ), which could prevent lactate production by downregulating hypoxia-inducible factor-1α (HIF-1α) expression. As lactate plays a critical role in tumor development, the biohybrid Bac@MnO2 could significantly inhibit tumor progression by coupling bacteria respiration with tumor metabolism.


Asunto(s)
Neoplasias del Colon/metabolismo , Compuestos de Manganeso/metabolismo , Óxidos/metabolismo , Shewanella/metabolismo , Animales , Línea Celular Tumoral , Neoplasias del Colon/patología , Regulación hacia Abajo , Humanos , Peróxido de Hidrógeno/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Ácido Láctico/metabolismo , Compuestos de Manganeso/química , Ratones , Nanopartículas/química , Nanopartículas/metabolismo , Neoplasias Experimentales/metabolismo , Neoplasias Experimentales/patología , Óxidos/química , Oxígeno/metabolismo , Tamaño de la Partícula , Propiedades de Superficie
16.
Nat Biomed Eng ; 4(9): 853-862, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32632226

RESUMEN

Patients with kidney failure commonly require dialysis to remove nitrogenous wastes and to reduce burden to the kidney. Here, we show that a bacterial cocktail orally delivered in animals with kidney injury can metabolize blood nitrogenous waste products before they diffuse through the intestinal mucosal barrier. The microbial cocktail consists of three strains of bacteria isolated from faecal microbiota that metabolize urea and creatinine into amino acids, and is encapsulated in calcium alginate microspheres coated with a polydopamine layer that is selectively permeable to small-molecule nitrogenous wastes. In murine models of acute kidney injury and chronic kidney failure, and in porcine kidney failure models, the encapsulated microbial cocktail significantly reduced urea and creatinine concentrations in blood, and did not lead to any adverse effects.


Asunto(s)
Enteroadsorción/métodos , Microbiota , Compuestos de Nitrógeno/aislamiento & purificación , Insuficiencia Renal/terapia , Administración Oral , Alginatos/química , Amoníaco/metabolismo , Animales , Bacterias/clasificación , Bacterias/aislamiento & purificación , Bacterias/metabolismo , Cápsulas/administración & dosificación , Cápsulas/química , Creatinina/metabolismo , Modelos Animales de Enfermedad , Heces/microbiología , Indoles/química , Ratones , Microfluídica , Microesferas , Compuestos de Nitrógeno/metabolismo , Polímeros/química , Porcinos , Resultado del Tratamiento , Urea/metabolismo
17.
Nat Commun ; 11(1): 1985, 2020 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-32332752

RESUMEN

The unsatisfactory response rate of immune checkpoint blockade (ICB) immunotherapy severely limits its clinical application as a tumor therapy. Here, we generate a vaccine-based nanosystem by integrating siRNA for Cd274 into the commercial human papillomavirus (HPV) L1 (HPV16 L1) protein. This nanosystem has good biosafety and enhances the therapeutic response rate of anti-tumor immunotherapy. The HPV16 L1 protein activates innate immunity through the type I interferon pathway and exhibits an efficient anti-cancer effect when cooperating with ICB therapy. For both resectable and unresectable breast tumors, the nanosystem decreases 71% tumor recurrence and extends progression-free survival by 67%. Most importantly, the nanosystem successfully induces high response rates in various genetically modified breast cancer models with different antigen loads. The strong immune stimulation elicited by this vaccine-based nanosystem might constitute an approach to significantly improve current ICB immunotherapy.


Asunto(s)
Antineoplásicos Inmunológicos/uso terapéutico , Neoplasias de la Mama/terapia , Vacunas contra el Cáncer/administración & dosificación , Inmunoterapia/métodos , Nanopartículas/administración & dosificación , Animales , Antígeno B7-H1/antagonistas & inhibidores , Antígeno B7-H1/genética , Neoplasias de la Mama/genética , Neoplasias de la Mama/inmunología , Vacunas contra el Cáncer/genética , Vacunas contra el Cáncer/inmunología , Proteínas de la Cápside/genética , Proteínas de la Cápside/inmunología , Línea Celular Tumoral/trasplante , Modelos Animales de Enfermedad , Femenino , Técnicas de Silenciamiento del Gen , Células HEK293 , Papillomavirus Humano 16/genética , Papillomavirus Humano 16/inmunología , Humanos , Inmunidad Innata/genética , Ratones , Recurrencia Local de Neoplasia , Proteínas Oncogénicas Virales/genética , Proteínas Oncogénicas Virales/inmunología , Supervivencia sin Progresión , ARN Interferente Pequeño/genética , Proteínas Recombinantes/administración & dosificación , Proteínas Recombinantes/genética , Microambiente Tumoral/genética , Microambiente Tumoral/inmunología , Vacunas Sintéticas/administración & dosificación , Vacunas Sintéticas/genética , Vacunas Sintéticas/inmunología
18.
Biomater Sci ; 8(2): 702-711, 2020 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-31777864

RESUMEN

Although chemotherapy is the most common method in clinical therapeutics with a straightforward mechanism, conventional anti-tumor drugs are still almost incapable of preventing the occurrence of tumor metastasis. In this study, we developed a multi-functional drug delivery system EINP@DOX consisting of a tea-derived polyphenol EGCG, iron ions and DOX. The system integrated the functions of tumor inhibition, diagnosis and metastasis prevention to achieve a systematic tumor treatment. The nanoscale size of EINP@DOX facilitated its accumulation in tumor tissues by means of the enhanced permeability and retention (EPR) effect, and it was then transferred to endosomes. The weakly acidic microenvironment in the endosomes of the tumor cells could destroy the coordination structure of EINP@DOX to realize the release of DOX for tumor therapy. Furthermore, the dissociative EGCG played the role of an adjuvant to restrain EMT and down-regulate the MMP levels, which could prevent the occurrence of tumor metastasis. Meanwhile, iron ions as superior magnetic resonance imaging (MRI) contrast agents provided visual evidence for the accurate location of EINP@DOX. In vitro and in vivo studies demonstrated that EINP@DOX showed a remarkable performance in tumor diagnosis and excellent therapeutic efficacy, inhibiting the metastasis of tumor cells effectively at the same time.


Asunto(s)
Antibióticos Antineoplásicos/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/prevención & control , Doxorrubicina/farmacología , Sistemas de Liberación de Medicamentos , Polifenoles/química , Animales , Antibióticos Antineoplásicos/química , Neoplasias de la Mama/diagnóstico por imagen , Células COS , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Chlorocebus aethiops , Doxorrubicina/química , Hierro/química , Imagen por Resonancia Magnética , Nanopartículas del Metal/química , Ratones , Tamaño de la Partícula
19.
Adv Sci (Weinh) ; 6(24): 1902500, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31871876

RESUMEN

Multitudinous industrial products in daily life put human health at risk of heavy metal exposure, and natural bacteria have displayed superior performance in bioadsorption and biodegradation of heavy metal. In this study, a bacteria-based bioreactor is developed to precisely bioadsorb lead (Pb) ions, eliminate concomitant reactive oxygen species (ROS), and remit the injury of acute/chronic Pb poisoning. A nonpathogenic bacteria Escherichia coli MG1655 (Bac) is decorated with antioxidative cerium oxide nanoparticles (Ceria) on the surface through a bio-orthogonal reaction, and the complex bioreactor could spontaneously aggregate in organs with high concentration of Pb. Furthermore, the excess Pb is bioadsorbed by bacteria and the concomitant ROS is eliminated by Ceria nanoparticles. In vitro and in vivo studies demonstrate that this integral biotic/abiotic hybrid bioreactor successfully realizes detoxication of Pb and reparation of injury, also accompanied with inappreciable side effects.

20.
Nano Lett ; 19(11): 8049-8058, 2019 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-31558023

RESUMEN

Pyroptosis is a lytic and inflammatory form of programmed cell death and could be induced by chemotherapy drugs via caspase-3 mediation. However, the key protein gasdermin E (GSDME, translated by the DFNA5 gene) during the caspase-3-mediated pyroptosis process is absent in most tumor cells because of the hypermethylation of DFNA5 (deafness autosomal dominant 5) gene. Here, we develop a strategy of combining decitabine (DAC) with chemotherapy nanodrugs to trigger pyroptosis of tumor cells by epigenetics, further enhancing the immunological effect of chemotherapy. DAC is pre-performed with specific tumor-bearing mice for demethylation of the DFNA5 gene in tumor cells. Subsequently, a commonly used tumor-targeting nanoliposome loaded with cisplatin (LipoDDP) is used to administrate drugs for activating the caspase-3 pathway in tumor cells and trigger pyroptosis. Experiments demonstrate that the reversal of GSDME silencing in tumor cells is achieved and facilitates the occurrence of pyroptosis. According to the anti-tumor activities, anti-metastasis results, and inhibition of recurrence, this pyroptosis-based chemotherapy strategy enhances immunological effects of chemotherapy and also provides an important insight into tumor immunotherapy.


Asunto(s)
Antimetabolitos Antineoplásicos/uso terapéutico , Cisplatino/uso terapéutico , Decitabina/uso terapéutico , Epigénesis Genética/efectos de los fármacos , Neoplasias/tratamiento farmacológico , Piroptosis/efectos de los fármacos , Animales , Antimetabolitos Antineoplásicos/administración & dosificación , Línea Celular Tumoral , Cisplatino/administración & dosificación , Decitabina/administración & dosificación , Sistemas de Liberación de Medicamentos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Liposomas , Ratones , Ratones Endogámicos BALB C , Neoplasias/genética , Receptores de Estrógenos/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...